High Voltage BCM[®] Bus Converter Module

Isolated, Fixed Ratio Bus Converter Family

For use in high end computing systems, industrial systems, Telcom/datacom systems and 384V_{DC} power distribution architectures.

Description

High Voltage Bus Converter Modules (HV BCMs) are 384V_{IN} power components that provide voltage transformation, current multiplication and isolation for designs that require high power density, high efficiency, small size and low weight. Buck or Buck-Boost regulators can be connected to the HV BCM output to provide the necessary regulated voltage for specific system loads. HV BCMs support common industry DC bus voltages of 12, 24 and 48V from 384V DC bus. With peak efficiencies of up to 98% and power densities of up to 2,735W/in³, the Vicor HV BCM product family offers benchmark performance in a small, cost effective package.

Utilizing the Vicor resonant Sine Amplitude Converter (SAC[™]) topology, HV BCMs leverage high frequency Zero-Voltage Switching (ZVS) and Zero-Current Switching (ZCS) to deliver unmatched efficiency and power density with low noise and fast transient response. In addition, the BCM's low AC impedance beyond the bandwidth of most downstream regulators enables bulk capacitance, normally located at the input of a regulator, to be placed at the high voltage input to the BCM. This reduces bulk capacitance requirement and offers saving of board area and system cost. When HV BCMs operate in reverse, they multiply the 12, 24 and 48V up to 384V to provide an efficient step-up conversion.

Offered in a range of packages, power levels and size options, BCMs provide unmatched performance to meet the demanding requirements of modern power system designs.

Features & Benefits

- 260 410V input (meets ETSI requirements)
- High peak efficiency: Up to 98%
- High power density: Up to 2,735W/in³
- Parallel inputs and outputs for high powered arrays
- Connect outputs in series for higher output voltages
- VI Chip Full
 - SMT or Through-hole form-factor
- ChiP Package
 - Through hole form-factor
 - PMBus[®] capable (using Digital Isolator/Digital Supervisor)
- Bidirectional capability

VICOR STR	6123 ChiP
	2 402 x 0 990 x 0 284in
	[61.00 X 25.14 X 7.21mm]
THE SCHOLAN	
Bus Co	
100	and and St.
	STOCK CATTON
	Full VI Chip
	1.280 X 0.866 X 0.265IN
6123 ChiP	[32.50 x 22.00 x 6.73mm]
UIZJ CHIF	

2.494 x 0.898 x 0.284in [63.34 x 22.80 x 7.21mm]

Model Number	Input (V)	Output (V)	Output Power (W)	Output Current (A)	Package	Control Interface
BCM6123TD0G5030yzz ^[b]	270V [200 - 400V]	33.8V [25 – 50V]	1000	30.0	6123 ChiP	Digital / Analog
BCM6123TD1E5117yzz ^[b]	384V [260 - 410V]	48V [32.5 – 51.3V]	800	16.9	6123 ChiP	Digital / Analog
BCM6123TD1E5126yzz ^[b]	384V [260 – 410V]	48V [32.5 – 51.3V]	1200	25.7	6123 ChiP	Digital / Analog
BCM6123TD1E5135yzz ^[b]	384V [260 – 410V]	48V [32.5 – 51.3V]	1750	35.0	6123 ChiP	Digital / Analog
BCM6123TD1E2663yzz	384V [260 – 410V]	24V [16.3 – 25.6V]	1500	62.5	6123 ChiP	Digital / Analog
BCM6123TD1E1368yzz ^[b]	384V [260 – 410V]	12V [8.1 – 12.8V]	800	68.0	6123 ChiP	Digital / Analog
BCM6123TD1E13A3yzz ^[b]	384V [260 – 410V]	12V [8.1 – 12.8V]	1500	125.0	6123 ChiP	Digital / Analog
BCM352T440y330A00	352V [330 – 365V]	44V [41.25 – 45.63V]	325	7.7	VIChip Full	Analog
BCM352T125y300A00	352V [330 – 365V]	12.5V (11.79 – 13.04V]	300	26.0	VIChip Full	Analog
BCM352T110y300B00	352V [330 – 365V]	11V [10.3 – 11.4V]	300	28.5	VIChip Full	Analog
BCM384T480y325Bzz	384V [360 - 400V]	48V [45 – 50V]	325	7.1	VIChip Full	Analog
BCM384T120y300Azz	384V [360 - 400V]	12V [11.3 – 12.5V]	300	27.3	VIChip Full	Analog

^[b] Bidirectional Capability

Part Number

Typical Applications

©2019 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation. PMBus[®] is a registered trademark of SMIF, Inc. All other trademarks, product names, logos and brands are property of their respective owners.

