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Ferroelectric ceramic capacitors: 

There is more than meets the eye

Presented at: 
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Resources

This lecture is recorded and be available at the YouTube channel:

https://www.youtube.com/user/sambenyaakov/videos

LinkedIn Group ” Where analog and power electronics meet knowledge “

https://www.linkedin.com/groups/13606756

Papers and university lectures 

http://www.ee.bgu.ac.il/~pel/

sby@bgu.ac.il

Thanks to Mr. Evgeny Rozanov assisting in the preparation of this presentation
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Background

Ceramic capacitors are one of the most popular electronic

devices. They are used for filtering, decoupling and

bypass. And yet, not all the features of these devices are

understood or even known.
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Objective

To present unfamiliar characteristics of ceramic

capacitors (especially ferroelectric type) relevant to power

electronics.

• For ceramic capacitor types and classification see

https://en.wikipedia.org/wiki/Ceramic_capacitor 
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Outline

1. General specifications of commercial ceramic capacitors

2. ESR as a function of bias voltage 

3. Piezoelectricity

4. Nonlinear capacitor modeling
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General specifications of commercial ceramic capacitors 
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Wikipedia

Structure of ceramic capacitors
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Commercial Ceramic capacitors

• Practical ceramic capacitors are build around paraelectric (Class I) 

and ferroelectric (Class II,III) dielectric materials

• Predominant Class I material is C0G (NPO) – low dielectric constant

• Class II, III includes different dielectric materials e.g. X7R, Y5V ……

High dielectric constant, Class III the highest, small capacitors

• Single, or multilayer (MLCC) 

Ferroelectric – dependence on electric field 

Similar to ferromagnetic – dependence on magnetic field 

Has nothing to do with ferro (iron)!
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Paraelectric - COG (NPO)

Small 𝜀𝑟 , smaller ESR

Ferroelectric

Large 𝜀𝑟, larger ESR
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Feroelectricity - Electric polarization

Polarization: a measure of 

electric dipole moment, ability to 

bound charge



Prof. Sam Ben-Yaakov 11

Electric polarization of dielectric materials 

Paraelectricity, ferroelectricity

Ferroelectric material

∝Q

∝V

Constant dielectric

Paraelectric

Ferroelectric 𝜀𝑟 of ferroelectric material is very large up to 7000

Small capacitors 
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Ferroelectric hysteresis and capacitance 

Charge [Q]

Voltage [V] 

𝐶𝑑 =
𝑑𝑄

𝑑𝑉
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Commercial paraelectric 

ceramic capacitors (C0G) 

are limited to about 0.1μF
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EIA - Electronic Industries Alliance JIS - Japanese Industrial Standards

GOC 

(NPO)

Temperature dependence
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𝜔0 =
1

𝐿𝐶
𝑓0 =

1

2𝜋 𝐿𝐶

At resonance:

CESR ESL

ESRCESR ESL

𝑓 < 𝑓0 :  𝑍 =
1

𝜔𝐶

𝑓 > 𝑓0 :  𝑍 = 𝜔𝐸𝑆𝐿

𝑓0

𝜔𝐸𝐶𝐿

𝐸𝑆 

𝜔𝐸𝑆𝐿

Typical ceramic capacitor data sheet parameters
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𝑃 = 𝑖𝑟𝑚𝑠
2 ∙ 𝐸𝑆 

∆𝑇 = 𝑃 ∙  𝑡𝑒𝑟𝑚𝑎𝑙
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Why 0.1uF in parallel to a larger capacitor?
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𝜔𝐿 =
1

𝜔𝐶

𝜔 =
1

𝐿𝐶

Resonant 

frequency
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Local, Small signal, Cd Large signal Cac

1kHz

Capacitance definition (?)

Why the peak?
CVAC

0.5Vrms

C

VBIAS

1VAC
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The effect of size on C=f(Vbias)
(No endorsement/affiliation implied)
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The effect of size
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The effect of size and WDCV
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ESR as a function of bias voltage 



Prof. Sam Ben-Yaakov 24

C, ESR C1, ESR1 C2, ESR2

C
E

S
R

E
S

L

C1, C2 < C

ESR1, ESR2 >ESR
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Large capacitance

Smaller ESR?

Small capacitance

Larger ESR?

?
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Significant question because ceramic capacitors losses are: 

𝑃 = 𝐸𝑆 ∙ 𝑖𝑟𝑚𝑠
2

CIN
CO

S

D

L

RL

IC

VC

VDC

VAC

t

t
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With DC bias Without DC bias 

Z5U
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Measurements

by Mr. Hermann Haag of Omicron LAB,

and Vorarlberg University of Applied Sciences, 

Austria  

using Omicron’s Bode 100 Network Analyzer
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ESR

400V bias0V bias

According to Bode 100 measurements ESR is increasing with bias

(consistent with paper)

C1812W334KCRACTU (same as K-SIM data)
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80V bias increases 

ripple current loss by 

more then 10 fold!

???
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X7R

0.33uF

500V

1812

Same as the one 

tested by Bode 100
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K-SIM KEMET

Z

ESR



Prof. Sam Ben-Yaakov 36

According to K-SIM ESR is decreasing with bias

(not consistent with papers and Bode100 results)

456mΩ & 10kHz
68mΩ & 10kHz

400V bias 

0V bias 
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?
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Voltage bias effect on the ESR of ferroelectric ceramic capacitors 

Hermann Haag1
, Florian Hämmerle1, and Shmuel (Sam) Ben-Yaakov2

1 Omicron Lab, Austria
2 Ben-Gurion University, Israel

Submitted to PCIM- 2020
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X7R, 15nF, 1000V capacitor 

(KEMET, C1206W153KDRACTU), 
X7R, 15nF, 50V capacitor 

(Wurth, 885012208082).
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Material Capacitance Voltage ESR 

change

ESR

K-SIM

X5R 3.3µF 25V +25.1% -68.0%

X5R 10µF 25V +30.5%

X5R 47µF 16V +1.2%

X7R 330nF 50V +20.4% -20.0%

X7R 2.2µF 50V +64.8%

X7R 15nF 50V +13.7%

X7R 15nF 1000V +76.3%

X7R 68nF 1000V +71.1%

Table I. A summary of measured ESR and comparison to K-SIM simulation  
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Piezoelectricity

1. Ferroelectric dielectric is piezoelectric

2. Reciprocal relation between electrical field and mechanical stress

3. When electrically driven by AC ceramic capacitors emit acoustic waves

4. Multiple resonant frequencies

5. Can cinduce“ singing capacitors” phenomenon

5. Can be used to detect defects
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ESR
ESR
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Measurements

by Mr. Hermann Haag of Omicron LAB,

and Vorarlberg University of Applied Sciences, 

using Omicron’s Bode 100 Network Analyzer

ESR
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Experiment Setup for Film Capacitor

Film Film Film

Measurements

by Mr. Stanislav Tishechkin, Department of ECE, Ben-Gurion University, 

using Omicron’s Bode 100 Network Analyzer
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Results for Film Capacitor 

ESR
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Experiment Setup and results for X7R Capacitor

Film

4.7uF

X7R Film

4.7uF

ESR
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Submitted to PCIM - 2020
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ESR and piezoelectricity of ceramic capacitors: 

more research is required
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Nonlinear capacitors modeling
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Local, Small signal, Cd Large signal Cac

1kHz

Capacitance definition

Why the peak?
CVAC

0.5Vrms

C

VBIAS

1VAC
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( )
dt

vCd
v

dt

dv
vCi

)(
)( +=

𝑖 =
𝑑{𝐶 𝑣 ∙ 𝑣}

𝑑𝑡

𝑖 = 𝐶(𝑣)
𝑑𝑣

𝑑𝑡

Which model is correct?
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Q

V

Q

The fundamental property of a charge storing device - Q=f(V)

𝛼

𝑖 =
𝑑{𝑄}

𝑑𝑡



Prof. Sam Ben-Yaakov 59

Redefining ‘capacitance’

v

vQ
vCt

)(
)( =

dv

vdQ
vCd

)(
)( =

𝐶𝑎𝑐(𝑣, 𝐴) =
∆𝑄

∆𝑉

Total Capacitance 

Local Capacitance

Small signal 

Large signal Capacitance 

Cac =
∆Q

∆V
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Redefining ‘capacitance’

Cac =
∆Q

∆V

0.5Vrms
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dv

vdQ
vCd

)(
)( =

dvvCvQ d )()( =

𝑖 = 𝐶𝑑(𝑣)
𝑑𝑣

𝑑𝑡

v

vQ
vCt

)(
)( =

v

dvvC
vC

v

d

t


= 0

)(
)(

𝑄(𝑣) = 𝑣𝐶𝑡(𝑣)

( )
dt

vCd
v

dt

dv
vCi t

t

)(
)( +=

Cac =
∆Q

∆V

Total Capacitance Local Capacitance

Small signal 

𝑖 =
𝑑{𝑣𝐶𝑡(𝑣)}

𝑑𝑡
dt

dv
vC

dt

vdQ
d )(

)(
=
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𝑖 = 𝐶𝑑(𝑣)
𝑑𝑣

𝑑𝑡

v

dvvC
vC

v

d

t


= 0

)(
)(

( )
dt

vCd
v

dt

dv
vCi t

t

)(
)( +=

Conclusion: Both models are correct

Provided that the ‘capacitances’ are defined properly
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So why the peak?

Cac
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Thank you for your attention!


